Resurgent ZZ and FZZT branes in minimal strings and JT gravity

Paolo Gregori

Instituto Superior Tecnico - Lisbon
Physical resurgence: On quantum, gauge, and stringy

FCT
 Fundação para a Ciência
 e a Tecnologia

Based on:

- [PG, Ricardo Schiappa] arXiv:2108.11409
- [B. Eynard, E. Garcia-Failde, PG, D. Lewański, Ricardo Schiappa] arXiv:2210.xxxxx

Motivation

- Can we classify and systematically compute non-perturbative data in 2-d gravitational theories?
- Can we use such data to reproduce known behaviours of observables (e.g. spectral density, spectral form factor)?
- A large class of models (minimal strings, JT gravity) admits a matrix model description: combine topological recursion and resurgence!

Jackiw-Teitelboim Gravity

- 2d dilaton gravity with action [Jackiw-Teitelboim]

$$
S_{\mathrm{JT}}=-\frac{S_{0}}{4 \pi} \underbrace{\int_{\mathcal{M}} \sqrt{g} R}_{\text {topological }}-\frac{1}{2} \underbrace{\int_{\mathcal{M}} \sqrt{g} \phi(R+2)}_{\text {dilaton action }}+\text { (boundary terms) }
$$

- Dilaton ϕ acts as Lagrange multiplier: $R=-2 \rightarrow \mathrm{AdS}_{2}$
- Different topologies weighted by $\left(\mathrm{e}^{S_{0}}\right)^{2-2 g-n}=g_{\mathrm{s}}^{2 g+n-2}$
- Holographic dual of SYK model \rightarrow random ensemble of quantum mechanical models \rightarrow random matrices

Euclidean Partition Functions

- Relevant quantities for holography: Euclidean partition functions

$$
\left\langle Z\left(\beta_{1}\right) \cdots Z\left(\beta_{n}\right)\right\rangle \simeq \sum_{g=0}^{\infty} g_{\mathrm{s}}^{2 g+n-2} Z_{g, n}\left(\beta_{1}\right) \cdots Z\left(\beta_{n}\right)
$$

- Surfaces with n Schwarzian boundaries $+g$ handles

- Weil-Petersson volumes are the building blocks of EPFs:

$$
\langle Z(\beta)\rangle \simeq g_{s}^{-1} Z_{\mathrm{disk}}(\beta)+\sum_{g=1}^{\infty} g_{s}^{2 g-1} \int_{0}^{\infty} b d b V_{g, 1}(b) Z_{\text {trumpet }}(\beta, b)
$$

- $V_{g, n} \sim(2 g)$! [Mirzakhani-Zograf] \rightarrow Resurgence!

The Spectral Form Factor

- Two-boundary EPF of particular interest: spectral form factor: $\langle Z(\beta+\mathrm{i} t) Z(\beta-\mathrm{i} t)\rangle \quad$ connected + disconnected
- Airy example:

The Spectral Form Factor

- Two-boundary EPF of particular interest: spectral form factor: $\langle Z(\beta+\mathrm{i} t) Z(\beta-\mathrm{i} t)\rangle \quad$ connected + disconnected
- Airy example:

- Nonperturbative effects are needed!

Outline

(1) Matrix Models
(2) Non-perturbative effects in matrix models
(3) Resurgence toolkit
(4) Borel plane singularities
(5) Large order checks
(6) Resummations
(7) Summary and outlook

Table of Contents

(1) Matrix Models
(2) Non-perturbative effects in matrix models
(3) Resurgence toolkit
(4) Borel plane singularities
(5) Large order checks
(6) Resummations
(7) Summary and outlook

Review of matrix models

- $N \times N$ Hermitian one-matrix model with potential $V(x)$

$$
Z_{N}=\frac{1}{\operatorname{vol}(\mathrm{U}(N))} \int \mathrm{d} M \mathrm{e}^{-\frac{1}{g_{\mathrm{s}}} \operatorname{Tr} V(M)}
$$

- Associated spectral curve (one-cut case):

$$
y(x)=M(x) \sqrt{(x-a)(x-b)}
$$

related to the holomorphic effective potential acting on eigenvalues

$$
V_{\mathrm{h} ; \mathrm{eff}}^{\prime}(x)=y(x)
$$

and to the spectral density of eigenvalues

$$
\rho_{0}(\lambda)=\frac{1}{2 \pi} \operatorname{Im} y(\lambda)
$$

Correlators and topological recursion

- Matrix model correlators:

$$
W_{n}\left(z_{1}, \ldots, z_{n}\right)=2^{n} z_{1} \cdots z_{n}\left\langle\operatorname{Tr} \frac{1}{z_{1}^{2}-M} \cdots \operatorname{Tr} \frac{1}{z_{n}^{2}-M}\right\rangle_{(\text {conn })}
$$

have a perturbative expansion

$$
W_{n}\left(z_{1}, \ldots, z_{n}\right) \simeq \sum_{g=0}^{+\infty} W_{g, n}\left(z_{1}, \ldots, z_{n}\right) g_{\mathrm{s}}^{2 g+n-2}
$$

- They are computed by topological recursion [Eynard-Orantin]:

$$
\begin{aligned}
& W_{g, n}\left(z_{1}, J\right)=\operatorname{Res}_{z \rightarrow \alpha}\left\{K _ { y } (z _ { 1 } , z) \left[W_{g-1, h+1}(z,-z, J)+\right.\right.
\end{aligned}
$$

The dual matrix model of JT gravity

- From disk amplitude of the JT path integral: spectral density of dual matrix model:

$$
\rho_{0}(E)=\frac{1}{4 \pi^{2}} \sinh 2 \pi \sqrt{E}
$$

- From this, Mirzakhani spectral curve: $\frac{\sin 2 \pi \sqrt{x}}{4 \pi}$
- Infinite cut \rightarrow double scaled matrix model
- The $W_{g, n}\left(z_{1}, \ldots, z_{n}\right), V_{g, n}\left(b_{1}, \ldots, b_{n}\right)$, and $Z_{g, n}\left(\beta_{1}, \ldots, \beta_{n}\right)$ are related by a web of integral transforms

$(2,2 k+1)$ minimal strings

- The JT gravity spectral curve can be seen as the $k \rightarrow \infty$ limit of a class of spectral curves:

$$
\begin{equation*}
y_{(2,2 k-1)}(x)=T_{2 k-1}(\sqrt{x}) \tag{1}
\end{equation*}
$$

- These are the spectral curves of $(2,2 k-1)$ minimal strings: Liouville gravity coupled to a $(2,2 k-1)$ minimal model CFT
- First examples:

$$
\begin{aligned}
& y_{(2,1)}(x)=\sqrt{x} \\
& y_{(2,3)}(x)=T_{3}(\sqrt{x})
\end{aligned}
$$

Airy curve
Painlevé curve

Table of Contents

(1) Matrix Models

(2) Non-perturbative effects in matrix models
(3) Resurgence toolkit
(4) Borel plane singularities
(5) Large order checks
(6) Resummations
(7) Summary and outlook

DM
DEPARTMENT
OF MATHEMATICS
técnico lisboa

ZZ branes in matrix models

- ZZ branes are associated to eigenvalue tunneling
- One-instanton contribution of the form [David, Mariño-Schiappa-Weiss]

$$
F^{(1)} \simeq g_{s}^{1 / 2} S_{1} \exp \left(-\frac{A}{g_{s}}\right) \sum_{n=0}^{\infty} F_{n+1}^{(1)} g_{s}^{n}
$$

- All non-perturbative data captured by spectral geometry

ZZ branes from the spectral geometry

- For example, the instanton action:

$$
A=V_{\mathrm{h} ; \mathrm{eff}}\left(x_{0}\right)-V_{\mathrm{h} ; \mathrm{eff}}(b)=\int_{b}^{x_{0}} y(x) \mathrm{d} x
$$

- In the case of $(2,2 k-1)$ minimal strings: $(k-1)$ non-trivial saddles [Seiberg-Shih]

$$
A_{(n, k)}=(-1)^{k+n}\left(\frac{1}{2 k+1}+\frac{1}{2 k-3}\right) \sin \frac{2 \pi n}{2 k-1}
$$

- But, resonance! Instanton actions are actually twice as many [PG-Schiappa]

ZZ branes from the spectral geometry

- In the case of JT gravity:

- Infinitely many saddles!

$$
A_{\ell}=\int_{0}^{\ell^{2} / 4} y(x) \mathrm{d} x=\frac{(-1)^{\ell+1}}{4 \pi^{2}}
$$

ZZ branes from topological recursion

- The remaining data is captured by a saddle-point integral passing through the non-trivial saddle x_{0}

$$
F^{(1)}=\frac{1}{2 \pi} \int_{\Gamma_{0}} \psi(x) \mathrm{d} x
$$

where $\psi(x)$ is constructed via topological recursion
[Eynard-GarciaFailde-PG-Lewanski-Schiappa]

$$
\psi\left(z^{2}\right) \equiv \exp (\sum_{g=0, n=1}^{\infty} \frac{g_{s}^{2 g+n-2}}{n!} \overbrace{\int_{-z}^{z} \cdots \int_{-z}^{z}}^{n} W_{g, n})
$$

ZZ brane data

- For example, one-loop around one-instanton for the $(2,2 k-1)$ minimal string: [PG-Schiappa]

$$
S_{1} \cdot F_{1}^{(1)}=\frac{1}{4 \sin \frac{n \pi}{2 k-1}} \sqrt{\frac{(-1)^{k+n+1}}{2 \pi(2 k-1)} \cot \frac{n \pi}{2 k-1}} .
$$

- The saddle point integral can be computed algorithmically
- We easily get many loops around the one-instanton configuration (JT) [Eynard-GarciaFailde-PG-Lewanski-Schiappa]:

$$
\begin{aligned}
& S_{1} \cdot F_{1}^{(1)}=\frac{\mathrm{i}}{\sqrt{2 \pi}}, \quad \widetilde{F}_{2}^{(1)}=-\frac{68}{3}-\frac{5 \pi^{2}}{6}, \\
& \widetilde{F}_{3}^{(1)}=\frac{12104}{9}+\frac{818 \pi^{2}}{9}+\frac{241 \pi^{4}}{72}, \\
& \widetilde{F}_{4}^{(1)}=-\frac{10171120}{81}-\frac{311672 \pi^{2}}{27}-\frac{175879 \pi^{4}}{270}-\frac{163513 \pi^{6}}{6480}-\frac{29 \pi^{8}}{48}, \\
& \widetilde{F}_{5}^{(1)}=\frac{3859832480}{243}+\frac{442580824 \pi^{2}}{243}+\frac{50891471 \pi^{4}}{405}+\frac{33364187 \pi^{6}}{4860}+\frac{9595009 \pi^{8}}{31104}+\frac{19613 \pi^{10}}{1440} \\
& \ldots
\end{aligned}
$$

- Up to 12 loops!

ZZ branes for correlators

- The non-perturbative topological recursion construction generalizes to correlators via the loop insertion operator

$$
\Delta_{x} W_{n}\left(x_{1}, \ldots, x_{n}\right)=g_{s} W_{n+1}\left(x, x_{1}, \ldots, x_{n}\right)
$$

- Completely new non-perturbative data for correlators, which was out of reach with other approaches (e.g. string equations)
- For example [Eynard-GarciaFailde-PG-Lewanski-Schiappa]:

$$
S_{1} \cdot \widetilde{W}_{1, n}^{(1)}\left(z_{1}, \ldots, z_{n}\right)=\prod_{i=1}^{n} \frac{4}{4 z_{1}^{2}-1}
$$

- Universal!

FZZT branes in matrix models

- FZZT branes are associated to determinant insertions (i.e. orthogonal polynomials):

$$
\Psi(x)=\mathrm{e}^{-\frac{1}{2 g_{s}} V(x)}\langle\operatorname{det}(x-M)\rangle=\exp \left(-\frac{V_{\mathrm{h} ; \mathrm{eff}}(x)}{2 g_{s}}\right) \sum_{n=0}^{\infty} \Phi_{n+1}(x) g_{s}^{n}
$$

- The instanton action is the holomorphic effective potential \rightarrow x-dependent instanton action!
- They contribute only to correlators: not seen in the free energy
- Also computable via topological recursion [Eynard-Orantin]:

Table of Contents

(1) Matrix Models

(2) Non-perturbative effects in matrix models
(3) Resurgence toolkit
(4) Borel plane singularities
(5) Large order checks
(6) Resummations
(7) Summary and outlook

Transseries

- The generic observable \mathcal{O} is described by a transseries, which will contain both ZZ and FZZT contributions:

$$
\mathcal{O}=\mathcal{O}^{(0)}+\mathcal{O}^{(Z Z)}+\mathcal{O}^{(F Z Z T)}
$$

- Not the full story! Missing multi-instanton contributions + resonance (which is general in these models)
- Enough to capture expected non-perturbative effects and leading large genus asymptotics

Borel plane singularities

- We expect two ZZ brane singularities at $\pm \frac{1}{4 \pi^{2}}$, and two FZZT brane singularities at $\pm V_{\mathrm{h} ; \mathrm{eff}}(x)$

- The FZZT singularity moves around as x changes!

Resurgent large order relations

- Instanton sectors attached to singularities in the Borel plane
- Cauchy's theorem gives us large order relation (example for two singularities):

$$
\begin{aligned}
\mathcal{O}_{g}^{(0)} \simeq & \frac{S_{1} \mathcal{O}_{1}^{(1)}}{2 \pi \mathrm{i}} \frac{\Gamma\left(2 g-\beta_{1}\right)}{A_{1}^{2 g-\beta_{1}}}\left(1+\frac{A_{1}}{2 g-\beta-1} \frac{\mathcal{O}_{2}^{(1)}}{\mathcal{O}_{1}^{(1)}}+O\left(g^{-2}\right)\right)+ \\
& +\frac{S_{2} \mathcal{O}_{1}^{(2)}}{2 \pi \mathrm{i}} \frac{\Gamma\left(2 g-\beta_{2}\right)}{\left(A_{2}\right)^{2 g-\beta_{2}}}\left(1+\frac{A_{2}}{2 g-\beta_{2}-1} \frac{\mathcal{O}_{2}^{(2)}}{\mathcal{O}_{1}^{(2)}}+O\left(g^{-2}\right)\right)+\cdots
\end{aligned}
$$

- Singularity that is closest to the origin dominates the asymptotics
- Large g asymptotics entirely encoded in non-perturbative data
(1) Numerical checks of our computations
(2) Large g asymptotics of quantities of interest

Table of Contents

(1) Matrix Models

(2) Non-perturbative effects in matrix models
(3) Resurgence toolkit

4 Borel plane singularities
(5) Large order checks
(6) Resummations
(7) Summary and outlook

DM
DEPARTMENT
OF MATHEMATICS
técnico lisboa

The one point function: integral representation

Since the FZZT instanton actions depend on the correlators variables z_{i}, we expect them to move around in the complex plane as the z_{i} change.

The position of Borel-plane singularities can be captured through approximate Borel transforms. One way of obtaining them is by making use of the integral representations of the correlators. For the one-point function we have:

$$
\begin{aligned}
W_{1}^{(1)}\left(g_{s} ; z\right) & \simeq-\frac{1}{2 \mathrm{i}} \int_{\mathcal{I}} \mathrm{d} x \frac{1}{x-z^{2}} \frac{1}{\sqrt{x}} \exp \left(-\frac{V_{\text {eff }}(x)}{g_{s}}\right) \\
& \simeq-\frac{1}{2 \mathrm{i}} \int_{\tilde{\mathcal{I}}} \mathrm{d} s \frac{1}{V_{\mathrm{eff}}^{\prime}(x(s))} \frac{1}{x(s)-z^{2}} \frac{1}{\sqrt{x(s)}} \exp \left(-\frac{s}{g_{s}}\right)
\end{aligned}
$$

The integrand is intepreted as an 'approximate Borel transform', featuring both the ZZ and FZZT Borel-plane singularities.

The one point function: Padé approximants

Otherwise, we can make use of Padé approximants:

The one point function: Padé approximants

Otherwise, we can make use of Padé approximants:

The one point function: Padé approximants

Otherwise, we can make use of Padé approximants:

The two point function: integral representation

The story is very similar for the two-point function, but here from the integral representation we get two distinct FZZT brane singularities:

$$
W_{2}^{(1)}\left(g_{s} ; z_{1}, z_{2}\right) \simeq \frac{1}{\mathrm{i}} \int_{\tilde{\mathcal{I}}} \mathrm{d} s \frac{1}{V_{\mathrm{eff}}^{\prime}(x(s))} \frac{1}{x(s)-z_{1}^{2}} \frac{1}{x(s)-z_{2}^{2}} \exp \left(-\frac{s}{g_{s}}\right)
$$

depending on the two variables z_{1} and z_{2}.
This is corroborated by the Padé approximant analysis.

The two point function: Padé approximants

Table of Contents

(1) Matrix Models

(2) Non-perturbative effects in matrix models
(3) Resurgence toolkit
(4) Borel plane singularities
(5) Large order checks
(6) Resummations
(7) Summary and outlook

Large order checks: free energy

- Only ZZ brane non-perturbative effects
- We can generate many Weil-Petersson volumes with Zograf's algorithm
- From them, we construct sequences which at $g \rightarrow \infty$ converge to the non-perturbative coefficient we want to test:

$$
\begin{aligned}
\frac{V_{g+1,0}}{4 g^{2} V_{g, 0}} & =\frac{1}{A^{2}}\left(1+\frac{1-2 \beta}{2 g}+O\left(g^{-2}\right)\right) \\
2 g\left(A^{2} \frac{V_{g+1,0}}{4 g^{2} V_{g, 0}}-1\right) & =1-2 \beta+O\left(g^{-1}\right) \\
\frac{A^{2 g-\beta} V_{g, 0}}{\Gamma(2 g-\beta)} & =\frac{S_{1} F_{1}^{(1)}}{2 \pi i}\left(1+O\left(g^{-1}\right)\right)
\end{aligned}
$$

and so on.

DM

Free energy: the instanton action

Figure: The sequence $\frac{V_{g+1,0}}{4 g^{2} V_{g, 0}}$ (blue), its first two Richardson transforms (orange and green), and the predicted value $1 / A^{2}=16 \pi^{2}$ (red).

Free energy: the characteristic exponent

Figure: The sequence $2 g\left(A^{2} \frac{V_{g+1,0}}{4 g^{2} V_{g, 0}}-1\right)$ (blue), its first two Richardson transforms (orange and green), and the predicted value $\beta=5 / 2$ (red) $\int \mathrm{J}$

Free energy: the one-loop around one-instanton

Figure: The sequence $\frac{A^{2 g-\beta} F_{g}^{(0)}}{\Gamma(2 g-\beta)}$ (blue), its first two Richardson transforms (orange and green) and the predicted value $\frac{S_{1} F_{1}^{(1)}}{2 \pi \mathrm{i}}=\frac{1}{\sqrt{2} \pi^{3 / 2}}$ (red).

DM DEPARTMENT OF MATHEMATICS tÉcNicO LISBOA

The one point function

- Both FZZT and ZZ brane contributions:

$$
W_{1}(z)=W_{1}^{(0)}(z)+W_{1}^{(Z Z)}(z)+W_{1}^{(F Z Z T)}(z)
$$

- Competing large genus asymptotics

$$
\begin{aligned}
W_{g, 1}^{(0)}(z) \simeq & \frac{1}{\sqrt{2} \pi^{\frac{3}{2}}}\left(4 \pi^{2}\right)^{2 g-\frac{3}{2}} \Gamma\left(2 g-\frac{3}{2}\right)\left[\frac{4}{z^{2}-4}+\ldots\right]+\ldots \\
& +\frac{1}{\pi}\left(V_{\mathrm{eff}}\left(z^{2}\right)\right)^{-2 g+1} \Gamma(2 g-1)\left[\frac{1}{2 z}+\ldots\right]+\ldots
\end{aligned}
$$

- Perturbative data generated through TR (slow)

One-point function: the instanton action

Figure: The black dashed line is the fifth Richardson tranform of the instanton action sequence of $W_{1}(z)$, as a function of z. In red and blue, the theofetigal values associated to FZZT and ZZ branes.

One-point function: the characteristic exponent

Figure: The black dashed line is the fifth Richardson tranform of the characteristic exponent sequence of $W_{1}(z)$, as a function of z. In red and blue, the theorratical values associated to FZZT and ZZ branes.

One-point function: the one-loop around one-instanton

Figure: The black dashed line is the fifth Richardson tranform of the one-loop around one-instanton sequence of $W_{1}(z)$, as a function of z. In red and blupe, the theoretical values associated to FZZT and ZZ branes.

The two-point function

- Two distinct FZZT brane contributions:

$$
\begin{aligned}
W_{2}\left(z_{1}, z_{2}\right)= & W_{2}^{(0)}\left(z_{1}, z_{2}\right)+W_{2}^{(Z Z)}\left(z_{1}, z_{2}\right)+W_{2}^{\left(F Z Z T_{1}\right)}\left(z_{1}, z_{2}\right)+ \\
& +W_{2}^{\left(F Z Z T_{2}\right)}\left(z_{1}, z_{2}\right),
\end{aligned}
$$

- Competing large genus asymptotics:

$$
\begin{aligned}
W_{g, 2}^{(0)}\left(z_{1}, z_{2}\right) \simeq & \frac{1}{\sqrt{2} \pi^{\frac{3}{2}}}\left(4 \pi^{2}\right)^{2 g-\frac{1}{2}} \Gamma\left(2 g-\frac{1}{2}\right)\left[\frac{4}{z_{1}^{2}-4} \frac{4}{z_{2}^{2}-4}+\ldots\right]+\ldots \\
& +\frac{1}{\pi}\left(V_{\text {eff }}\left(z_{1}^{2}\right)\right)^{-2 g} \Gamma(2 g)\left[\frac{1}{z_{2}^{2}-z_{1}^{2}}+\ldots\right]+\ldots \\
& +\frac{1}{\pi}\left(V_{\text {eff }}\left(z_{2}^{2}\right)\right)^{-2 g} \Gamma(2 g)\left[\frac{1}{z_{1}^{2}-z_{2}^{2}}+\ldots\right]+\ldots
\end{aligned}
$$

- Perturbative data generated through TR (slow)

Two-point function: the instanton action

Figure: The fourth Richardson tranform of the instanton action sequence for $W_{2}(z, 0.25)$, as a function of z. In red and violet, the theoretical values DM associated to the FZZT_{1} and FZZT_{2} instanton actions.

Two-point function: the instanton action

Figure: The fourth Richardson tranform of the instanton action sequence for $W_{2}(z, 0.75)$, as a function of z. In red and blue, the theoretical values assspriated to the FZZT_{1} and ZZ instanton actions.

Two-point function: the characteristic exponent

Figure: The fourth Richardson tranform of the characteristic exponent sequence for $W_{2}(z, 0.25)$, as a function of z. In red and violet, the theoretical valuesm associated to the FZZT_{1} and FZZT_{2} characteristic exponents.

Two-point function: the characteristic exponent

Figure: The fourth Richardson tranform of the characteristic exponent sequence for $W_{2}(z, 0.75)$, as a function of z. In red and blue, the theoretical values ${ }_{\mathrm{DM}}$ associated to the FZZT $_{1}$ and $Z Z$ characteristic exponents.

Two-point function: the one-loop around one-instanton

Figure: The fourth Richardson tranform of the one-loop around one-instanton sequence for $W_{2}(z, 0.25)$, as a function of z. In red and violet, the theoretigal values associated to the FZZT_{1} and FZZT_{2} one-loop around one-instanto

Two-point function: the one-loop around one-instanton

Figure: The fourth Richardson tranform of the one-loop around one-instanton sequence for $W_{2}(z, 0.75)$, as a function of z. In red and blue, the theoretied

Table of Contents

(1) Matrix Models

(2) Non-perturbative effects in matrix models
(3) Resurgence toolkit
(4) Borel plane singularities
(5) Large order checks
(6) Resummations
(7) Summary and outlook

DM
DEPARTMENT
OF MATHEMATICS
técnico lisboa

The spectral density

- In the Airy toy model $\left(y(x)=\sqrt{x} \Longrightarrow \rho_{0}(\lambda)=\sqrt{-x} /(2 \pi)\right)$, we have an exact formula for the resummed spectral density:

$$
\rho(\lambda)=g_{s}^{-2 / 3}\left[\operatorname{Ai}^{\prime}\left(\lambda g_{s}^{-2 / 3}\right)^{2}-\lambda g_{s}^{-2 / 3} \operatorname{Ai}\left(\lambda g_{s}^{-2 / 3}\right)^{2}\right]
$$

The spectral density

- Non-perturbative contributions add wiggles in the 'allowed' region, and an exponentially decaying contribution in the 'forbidden' region
- The same thing happens when we add FZZT contributions to the JT gravity spectral density

The spectral form factor

- Recall the definition:

$$
\begin{equation*}
\langle Z(\beta+\mathrm{i} t) Z(\beta-\mathrm{i} t)\rangle=\int_{-\infty}^{\infty} \mathrm{d} x_{1} \int_{-\infty}^{\infty} \mathrm{d} x_{2} \mathrm{e}^{(\beta+\mathrm{i} t) x_{1}+(\beta-\mathrm{i} t) x_{2}} W_{2}\left(x_{1}, x_{2}\right) \tag{2}
\end{equation*}
$$

- As it turns out, the spectral form factor is given by a convergent power series because of miraculous cancellations[Blommaert-Kruthoff-Yao]
- The inverse Laplace transform turns the FZZT contribution to the two-point correlator from non-perturbative to perturbative!

The spectral form factor

- In the Airy case, we see that the FZZT brane contributions (one- and two-instanton) are responsible for the plateau regime of the spectral form factor:

Table of Contents

(1) Matrix Models

(2) Non-perturbative effects in matrix models
(3) Resurgence toolkit
(4) Borel plane singularities
(5) Large order checks
(6) Resummations
(7) Summary and outlook

Summary of the results

- Summary
(1) Using topological recursion, we developed a new systematic technique for computing ZZ non-perturbative data for free energies and correlators in matrix models
(2) We verified the presence of competing FZZT and ZZ effects both in terms of Borel plane singularities and large genus asymptotics
(3) We provided a new (and generalizable) way of computing large genus asymptotics of Weil-Petersson volumes
(9) We were able to reproduce the plateau region of the spectral form factor of JT gravity using FZZT brane contributions
- Outlook
(1) What about multi-instanton sectors? And resonance?
(2) Can we write the full resonant transseries of JT gravity?
(3) How do our techniques extend to spectral curves without an underlying matrix model?

Thank you!

Research supported in part by FCT-Portugal under grant PTDC/MAT-OUT/28784/2017

DM
DEPARTMENT OF MATHEMATICS técnico lisboa

